

AN EXTREMAL PROBLEM FOR GRAHAM—ROTHSCHILD PARAMETER WORDS

H. LEFMANN

Received August 1, 1986

This paper exposes connections between the theory of Möbius functions and extremal problems, extending ideas of Frankl and Pach [8]. Extremal results concerning the trace of objects in geometric lattices and Graham—Rothschild parameter posets are proved, covering previous results due to Sauer [16] and Perles and Shelah [17].

0. Introduction

Answering a question of Erdős, Perles, Shelah and Sauer proved the following Theorem [16, 17]. Let X be a finite set with |X| = n. Further let $\mathscr{F} \subseteq \mathscr{P}(X)$ be a subset of the powerset $\mathscr{P}(X)$ of X with $|\mathscr{F}| > \sum_{i=0}^{t} \binom{n}{i}$ for some nonnegative integer t < n. Then there exists a subset $T \subseteq X$ with |T| = t + 1, such that for every subset $T_0 \subseteq T$ there exists a set $F \in \mathscr{F}$ with $F \cap T = T_0$.

In [8] this theorem arises as a corollary from theorems concerning Steiner-systems. For related results compare e.g. [13, 2, 3, 7].

In this paper we indicate some connections between the theory of Möbius functions (cf. [1]) and extremal problems. This leads to generalizations of Sauer's result for geometric lattices and Graham—Rothschild parameter words.

1. Null t-designs

Let (X, \land, \lor) be a ranked finite lattice with minimal element 0 and maximal element 1. The underlying partial order is denoted by \leq . For nonnegative integers l let $\binom{X}{l} = \{x \in X | rg(x) = l\}$ be the l'th level of X. The vector space of all real valued functions $f: X \to \mathbb{R}$ is denoted by V(X). For $z \in X$ let $N(z) = |\{x \in [0, z] | \mu(x, z) \neq 0\}|$, where μ is the Möbius function of X.

Let t be a nonnegative integer. A function $f: X \to \mathbb{R}$ is a null t-design iff for every $x \in X$ with $rg(x) \le t$ it is valid $\sum_{z \in [x,1]} f(z) = 0$. A function $f: X \to \mathbb{R}$ is a

154 H. LEFMANN

maximal null t-design iff f is a null t-design but not a null (t+1)-design. Clearly, null t-designs form subspaces of V(X). For the powerset lattice $\mathcal{P}(n)$ of an n element set these were studied e.g. in [12], [10], [5], [6], [8] and [9].

Theorem 1. Let $f: X \to \mathbb{R}$ be a maximal null t-design with t < rg(1). Then

$$\left|\left\{x\in X|f(x)\neq 0\right\}\right| \geq \min_{z\in \binom{X}{t+1}} N(z)$$

and this bound is sharp.

Proof of Theorem 1. We show first that equality can be attained. For $x \in X$ let $\chi_x \colon X \to \{0, 1\}$ denote the indicator function w.r.t. x defined by $\chi_x(y) = 1$ iff x = y. Take $z \in \binom{X}{t+1}$ such that $N(z) = \min_{\substack{x \in \binom{X}{t+1}}} N(x)$. Consider the function $f \colon X \to \mathbb{R}$ with $f = \sum_{x \in [0, z]} \mu(x, z) \cdot \chi_x$. Clearly, $|\{x \in X \mid f(x) \neq 0\}| = N(z)$. We prove that f is a maximal null t-design. Let $y \in X$ with $rg(y) \leq t$. By definition of f and μ we conclude:

$$\sum_{v \in [y,1]} f(v) = \sum_{v \in [y,1]} \sum_{x \in [0,z]} \mu(x,z) \cdot \chi_x(v)$$
$$= \sum_{v \in [y,z]} \mu(v,z)$$
$$= 0$$

while on the other hand we have

$$\sum_{v \in [z,1]} f(v) = \sum_{v \in [z,1]} \sum_{x \in [0,z]} \mu(x,z) \cdot \chi_x(v)$$

$$= \mu(z,z)$$

$$= 1.$$

Thus f is a maximal null t-design.

Now we prove the desired inequality. For a function $f: X \to \mathbb{R}$ and $x \in X$ let $f_x: [0, x] \to \mathbb{R}$, the trace of f w.r.t. x, be defined by

$$f_{x}(v) = \sum_{\substack{x \wedge w = v \\ w \in X}} f(w)$$

for $v \in [0, x]$.

Fact. Let $f: X \to \mathbb{R}$ be a null t-design and let $x \in X$. Then f_x is a null t-design on [0, x].

Proof of Fact. Let $u \in [0, x]$ with $rg(u) \le t$. By the definition of f_x and the assumption, that f is a null t-design it follows:

$$\sum_{v \in [u, x]} f_x(v) = \sum_{v \in [u, x]} \sum_{\substack{x \land w = v \\ w \in X}} f(w)$$

$$= \sum_{w \in [u, 1]} f(w)$$

$$= 0. \quad \blacksquare$$

Let $f: X \to \mathbb{R}$ be a maximal null t-design with t < rg(1). Then there exists $u \in {X \choose t+1}$ with $\sum_{x \in [u,1]} f(x) = c \neq 0$. By induction on rg(u) - rg(r) we prove that for every $r \in [0, u]$ it is valid

$$f_u(r) = \mu(r, u) \cdot c.$$

For r=u we have

$$f_u(u) = \sum_{\substack{w \wedge u = u \\ w \in X}} f(w) = c.$$

Suppose that for some $r \in [0, u)$ the statement is valid for all $s \in (r, u]$. By the fact f_u is a null t-design and since $rg(r) \le t$ we get by the inductive assumption:

$$0 = \sum_{s \in [r, u]} f_u(s)$$

$$= f_u(r) + \sum_{s \in [r, u]} f_u(s)$$

$$= f_u(r) + c \cdot \sum_{s \in [r, u]} \mu(s, u).$$

Now $\mu(r, u) = -\sum_{s \in (r, u]} \mu(s, u)$ yields $f_u(r) = c \cdot \mu(r, u)$. Since $f_u(r) \neq 0$ implies that $f(x) \neq 0$ for some $x \in X$ with $x \wedge u = r$ we get

$$|\{x \in X | f(x) \neq 0\}| \ge N(u). \quad \blacksquare$$

Denote by

- $\mathcal{P}(n)$ the powerset lattice of an n element set
- $\mathcal{L}(n,q)$ the lattice of linear subspaces of an *n* dimensional linear space over GF(q)
- $\mathcal{A}(n,q)$ the lattice of affine subspaces of an *n* dimensional vector space over GF(q)
- $\Pi(n)$ the lattice of partitions of an n element set.
- Let $\binom{n}{i}$, $\binom{n}{i}_q$, $q^{n-i+1}\binom{n}{i-1}_q$ and $S_{n,i}$ be the corresponding Whitney-num-

bers. Recall that $G_{n,q} = \sum_{i=0}^{n} {n \choose i}_q$ resp. $B_n = \sum_{i=0}^{n} S_{n,i}$ are the Galois numbers resp. Bellnumbers.

In [15] it has been shown that for finite geometric lattices X it is valid: $\mu(x, y) \neq 0$ for all $x, y \in X$ with $x \leq y$. Applications of Theorem 1 to the above mentioned structures yield the following corollaries:

Corollary [8]. Let $f: \mathcal{P}(n) \to \mathbb{R}$ be a nontrivial null t-design. Then

$$\left|\left\{S\in\mathscr{P}(n)|f(S)\neq 0\right\}\right|\geq 2^{t+1}.\quad\blacksquare$$

Corollary. Let $f: \mathcal{L}(n,q) \rightarrow \mathbb{R}$ be a nontrivial null t-design. Then

$$|\{U\in\mathcal{L}(n,q)|f(U)\neq 0\}| \geq G_{t+1,q}.$$

Corollary. Let $f: \mathcal{A}(n,q) \rightarrow \mathbb{R}$ be a nontrivial null t-design. Then

$$\left|\left\{U\in\mathscr{A}(n,q)|f(U)\neq 0\right\}\right|\geq 1+\sum_{i=0}^t q^{t-i}\binom{t}{i}_q.$$

156 H. LEFMANN

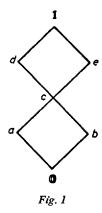
Corollary. Let $f: \Pi(n) \rightarrow \mathbb{R}$ be a nontrivial null t-design. Then

$$\left|\left\{\pi\in\Pi(n)|f(\pi)\neq0\right\}\right|\geq B_{t+1}.\quad\blacksquare$$

Now we consider again arbitrary ranked finite lattices X.

Theorem 2. Suppose that for all $x, y \in X$ with $x \le y$ it is valid $\mu(x, y) \ne 0$. Let $\mathscr{G} \subseteq X$ with $|\mathscr{G}| > \sum_{i=0}^{t} |\binom{X}{i}|$ for some t < rg(1). Then there exists $y \in \binom{X}{t+1}$ such that for every $x \in [0, y]$ there exists $g \in \mathscr{G}$ with $g \land y = x$.

The family $\mathscr{G} = \bigcup_{i=0}^{t} {X \choose i}$ shows that this bound is sharp. The assumption $\mu(x, y) \neq 0$ for all $x, y \in X$ with $x \leq y$ cannot be omitted as the following example indicates.



For the lattice X indicated in the figure we have $\mu(0,0)=\mu(0,c)=1$, $\mu(0,a)=\mu(0,b)=-1$ and $\mu(0,d)=\mu(0,e)=\mu(0,1)=0$. Let $\mathscr{G}=\{0,a,d,e,1\}$. There is no $g\in\mathscr{G}$ with $g\wedge c=b$.

Proof of Theorem 2. For $g \in \mathcal{G}$ let $f_g \in V(X)$ be a function defined by

$$f_g(x) = \begin{cases} 1 & \text{if } x \le g \text{ and } rg(x) \le t \\ 0 & \text{else.} \end{cases}$$

Since the subspace of V(X) generated by $\{f_g|g\in\mathscr{G}\}$ has dimension at most $\sum_{i=0}^{t} {X \choose i}$, there are reals $\alpha(g)$, $g\in\mathscr{G}$, not all zero such that $\sum_{g\in\mathscr{G}} \alpha(g)f_g=0$. Consider the function $h\in V(X)$ defined by

$$h(x) = \begin{cases} \alpha(x) & \text{if } x \in \mathcal{G} \\ 0 & \text{else.} \end{cases}$$

For $x \in X$ with $rg(x) \le t$ it is valid

$$\sum_{\substack{v \in [x,1]\\g \in \mathcal{G}}} h(v) = \sum_{\substack{g \in [x,1]\\g \in \mathcal{G}}} \alpha(g) = \sum_{\substack{g \in [x,1]\\g \in \mathcal{G}}} \alpha(g) \cdot f_g(x) =$$

$$= \sum_{\substack{g \in [x,1]\\g \in \mathcal{G}}} \alpha(g) f_g(x) + \sum_{\substack{g \notin [x,1]\\g \in \mathcal{G}}} \alpha(g) f_g(x) = \sum_{g \in \mathcal{G}} \alpha(g) f_g(x) = 0.$$

Thus $h: X \to \mathbb{R}$ is a nontrivial null t-design. As in the proof of Theorem 1 we find $y \in {X \choose t_0}$ with $t_0 \ge t+1$ such that $h_y(v) \ne 0$ for all $v \in [0, y]$ implying that for each $x \in {X \choose t+1}$ with $x \le y$ it is valid: for every $v \in [0, x]$ there exists $g \in \mathscr{G}$ with $g \land x = v$.

Corollary. Let X be a ranked, finite geometric lattice. Let $\mathscr{G} \subseteq X$ with $|\mathscr{G}| > \sum_{i=0}^{t} {X \choose i}$ for some t < rg(1). Then there exists $y \in {X \choose t+1}$ such that for every $x \in [0, y]$ there exists $g \in \mathscr{G}$ with $g \land y = x$.

For lattices X and Y let $X \cong Y$ denote that X and Y are isomorphic.

Corollary [16, 17]. Let $\mathscr{G} \subseteq \mathscr{P}(n)$ be a family of subsets with $|\mathscr{G}| > \sum_{i=0}^{t} {n \choose i}$ for some t < n. Then there exists a (t+1)-element subset $H \in \mathscr{P}(n)$ such that $\{H \cap G | G \in \mathscr{G}\} \cong \mathscr{P}(t+1)$.

Corollary. Let $\mathscr{G} \subseteq \mathscr{L}(n,q)$ be a family of linear subspaces with $|\mathscr{G}| > \sum_{t=0}^{t} \binom{n}{t}_q$ for some t < n. Then there exists a (t+1)-dimensional linear subspace $U \in \mathscr{L}(n,q)$ such that $\{U \cap G | G \in \mathscr{G}\} \cong \mathscr{L}(t+1,q)$.

Corollary. Let $\mathcal{G} \subseteq \mathcal{A}(n,q)$ be a family of affine subspaces with $|\mathcal{G}| > 1 + \sum_{t=0}^{t} q^{n-t} \binom{n}{t}_q$ for some t < n. Then there exists a t-dimensional affine subspace $U \in \mathcal{A}(n,q)$ such that $\{U \cap G | G \in \mathcal{G}\} \cong \mathcal{A}(t+1,q)$.

Corollary. Let $G \subseteq \Pi(n)$ be a family of partitions with $|\mathcal{G}| > \sum_{i=0}^{t} S_{n,i}$ for some t < n. Then there exists a partition $\pi \in \Pi(n)$ having (n-t-1) many blocks such that $\{\pi \land \tau | \tau \in \mathcal{G}\} \cong \Pi(t+1)$.

2. Graham—Rothschild Parameter Words

The concept of parameter words was introduced by Graham and Rothschild [11]. This combinatorial structure turned out to be a very fruitful tool in Ramsey Theory (compare e.g. [14]).

Let A be a finite alphabet. For nonnegative integers $m \le n$ and symbols $\lambda_0, ..., \lambda_{m-1}$, serving as parameters with $A \cap \{\lambda_0, ..., \lambda_{m-1}\} = \emptyset$, let $[A] \binom{m}{n}$ be the set of all mappings $f: \{0, ..., n-1\} \rightarrow A \cup \{\lambda_0, ..., \lambda_{m-1}\}$, which satisfy:

(i) $f^{-1}(\lambda_i) \neq \emptyset$ for every $0 \leq j < m$ and

(ii) $\min f^{-1}(\lambda_i) < \min f^{-1}(\lambda_j)$ for all $0 \le i < j < m$.

158 H. LEFMANN

Condition (i) means that all parameters $\lambda_0, ..., \lambda_{m-1}$ occur in the image of f and (ii) yields a rigid representation, i.e. the first occurrences of different parameters are in increasing order. Mappings $f \in [A] \binom{m}{n}$ are called *m-parameter words of length* n over alphabet A.

For example, a mapping $f \in [A] \binom{n}{0}$ describes just a point in A^n . The number of m-parameter words $f \in [A] \binom{n}{m}$ with |A| = a is counted by the noncentral Stirling numbers $S_{m}^{n}(a)$ of the second kind, where

$$S_m^n(a) = \frac{1}{2\pi i} \oint \frac{x^n}{\prod\limits_{i=0}^m (x-a-i)} dx;$$

these satisfy the Pascal identy

$$S_{m+1}^{n+1}(a) = S_m^n(a) + (a+m+1) \cdot S_{m+1}^n(a),$$

compare e.g. [4].

For parameter words $f \in [A] \binom{n}{m}$ and $g \in [A] \binom{m}{k}$ a composition $f \cdot g \in [A] \binom{n}{k}$ is defined by

$$f \cdot g(i) = \begin{cases} f(i) & \text{if } f(i) \in A \\ g(j) & \text{if } f(i) = \lambda_j. \end{cases}$$

This yields a partial ordering \leq on $\bigcup_{m=0}^{n} [A] \binom{n}{m}$. Let $f \in [A] \binom{n}{m}$ $g \in [A] \binom{n}{k}$. Then $f \geq g$ iff there exists $h \in [A] \binom{m}{k}$ such that $f \cdot h = g$. We illustrate this combinatorial structure for some special alphabets.

$A = \emptyset$:

Parameter words $f \in [\emptyset] \binom{n}{m}$ represent equivalence relations on $\{0, ..., n-1\}$ with exactly *m* classes given by $f^{-1}(\lambda_0), ..., f^{-1}(\lambda_{m-1})$. Thus $\bigcup_{m=0}^n [\emptyset] \binom{n}{m}$ is the set of all equivalence relations on $\{0, ..., n-1\}$ and $\left(\bigcup_{m=0}^{n} [\emptyset] {n \choose m}, \le \right)$ yields the dual of the lattice $\Pi(n)$ of partitions of an n element se

 $A = \{0, 1\}$:

0-parameter words $f \in [\{0, 1\}] \binom{n}{0}$ are characteristic functions yielding subsets of $\{0, ..., n-1\}$. In general, parameter words $f \in [\{0, 1\}] \binom{n}{m}$ represent $\mathscr{P}(m)$ sublattices in the powerset lattice $\mathcal{P}(n)$.

For further interpretations of Graham-Rotschild parameter words compare, e.g. [14].

Notice that $\left(\bigcup_{m=0}^{n} [A] {n \choose m}, \leq \right)$ for |A| > 1 represents no lattice, since a minimal element 0 is missing.

A result of Weisner [18] says that for each two elements u, v with u < 1 of a finite lattice X the following identity is valid

$$\sum_{x \wedge u = v} \mu(x, 1) = 0.$$

This immediately yields the Möbius function μ_n^A for parameter words of length n over A:

$$\mu_n^{\emptyset}(0, 1) = (-1)^{n-1} \cdot (n-1)!$$

$$\mu_n^{(0)}(0, 1) = (-1)^n \cdot n!.$$

It is easy to see that every nonempty interval $[\pi, \tau]$ in the partition lattice $\Pi(n)$ is isomorphic to a direct product of partition lattices $\Pi(k)$ with $k \le n$. A similar result is valid for Graham—Rotschild parameter words: Let A be an arbitrary finite alphabet and let $f, g \in \bigcup_{m=0}^{n} [A] \binom{n}{m}$ be parameter words with $f \leq g$. Then the interval [f, g] is isomorphic to a direct product of Graham—Rothschild-parameter lattices for at most one element alphabets. This yields

Lemma. Let A be a finite alphabet. Let $f, g \in \bigcup_{m=0}^{n} [A] {n \choose m}$ with $f \leq g$. Then

$$\mu_n^A(f,g)\neq 0.$$

By Theorem 2 this implies the following extremal result Theorem 3. Let A be a finite alphabet. Further let $\mathscr{G} \subseteq \bigcup_{n=0}^{n} [A] \binom{n}{m}$ with $|\mathscr{G}| > 1$ $> \sum_{i=0}^{t} S_{i}^{n}(|A|)$ for some t < n. Then there exists a (t+1)-parameter word $f \in [A] {n \choose t+1}$ such that for every $h \in \sum_{i=0}^{t+1} [A] {t+1 \choose i}$ there exists $g \in \mathcal{G}$ with $f \land g = f \cdot h$.

References

[1] M. AIGNER, Combinatorial Theory, Springer Verlag, New York (1979).

[2] N. Alon, On the density of sets of vectors, Disc. Math., 46 (1983), 199—202.
[3] N. Alon and V. D. Milman, Embedding of l^k_∞ in finite dimensional Banach spaces, Israel J. of Math., 45 (1983), 265—280.
[4] A. Benzalt and B. Voigt, A combinatorial interpretation of 1/k! Disc. Math., 73 (1989) 27—35

(1989), 27—35.

[5] M. DEZA and P. FRANKL, On the vector space of O-configurations, Combinatorica, 2 (1982), 341-345.

[6] M. DEZA, P. FRANKL and N. M. SINGHI, On functions of strength t, Combinatorica, 3 (1983),

[7] P. Frankl., On the trace of finite sets, JCT(A), 34 (1983), 41-45.

- [8] P. Frankl and J. Pach, On the number of sets in a null t-design, Europ. J. Comb., 4 (1983),
- [9] P. Frankl and N. M. Singhi, Linear dependencies among subsets of a finite set, Europ. J. Comb., 4 (1983), 313—318.
- [10] R. L. GRAHAM, S.-Y. R. Li and W.-C. W. Li, On the structure of t-designs, SIAM J. Alg Disc. Meth., 1 (1980), 8-14.
- [11] R. L. Graham and B. L. Rothschild, Ramsey's theorem for n-parameter sets, Trans. AMS, 159 (1971), 257-292.
- [12] J. E. Graver and W. B. Jurkat, The module structure of integral designs, JCT(A), 15 (1973), 75—90.
- [13] M. KARPOVSKY and V. D. MILMAN, Coordinate density of sets of vectors, Disc. Math., 24 (1978), 177—184.
- [14] H. J. PRÖMEL and B. VOIGT, Graham-Rothschild parameter sets, to appear in: The Mathematics of Ramsey Theory, ed. by J. Něsětril, V. Rödl.
- [15] G. C. Rota, On the foundations of Combinatorial Theory: I. Theory of Möbius functions, Z. f. Wahrscheinlichkeitstheorie, 2 (1964), 340—368.
 [16] N. SAUER, On the density of families of sets, JCT(A), 13 (1972), 145—147.
- [17] S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. of Math., 41 (1972), 247-261.
- [18] L. Weisner, Abstract theory of inversion of finite series, Trans. AMS, 38 (1935), 474—484.

Hanno Lefmann

Fakultät für Mathematik Universität Bielefeld Postfach 8640 D-4800 Bielefeld I West-Germany